楽音信号からの和音進行抽出手法と類似楽曲検索への応用

A Method for Detecting Chard Progressions and Its Application to Searching Similar Types of Music

莪山 真一

Shinidhi Gayama

要 旨 楽曲の和音進行を高速に抽出する手法と,和音進行の比較演算による類似 楽曲検索の一手法を提案する。和音進行は曲調の類似性を示す有力な要素であるが, 楽曲検索に求められる膨大な比較演算を行うためには,瞬時和音の再現よりも和音の 時間的変化を数値化することが重要となる。そこで著者は,楽音信号から時系列に検 出した和音群に平滑処理を施し,和音進行の情報量を圧縮するとともに,和声理論に 基づく和音進行の類似基準を導入することによって高速な類似楽曲検索を試みた。実 際の楽曲を用いて実験を行った結果,楽曲の特徴部分(サビ)を入力対象とした場合 には,同一曲は9割,カバー曲やBGM曲は7割が検索できた。

Summary The Author proposed a method for detecting chord progressions quickly from the waveform of music and its application to searching similar types of music making use of their comparative
calculation. Although the chord progressions are key elements which will create and distinguish the
similarity of music, it will be important for the purpose of searching music to analyze the transition of
chord progressions over time rather than to calculate absolute values for them correctly, because it will
be necessary in searching music to deal with a large number of comparative calculations. In this article,
the author proposed a method for normalizing and compressing values of chord progressions that would
be detected from the waveform, and tried high speed searching of similar types of music with similarity
of chord progressions by taking advantage of the law of harmony .As a result of an experiment taking
some popular music and making the partial waveform of this music into an input signal, the same music
was detected correctly 90 percent of the time, and 70 percent of the time for a cover or BM version of
the music, if the input were a characteristic part of the music.

キーワード: 楽曲検索,和音進行,和声理論,論理和表現

1. まえがき

近年,蓄積装置の大容量化と音楽圧縮技術の 性能向上により,個人でも大量の音楽を保存 し,楽しむことができるようになってきた。そ の一方で,利用者が大量の音楽を自ら整理し,

聴きたい楽曲を瞬時に探し出すことは非常に困難になってきており、それを解決するための有効な音楽検索手法が求められている。最近では、音楽的特徴を利用した楽曲検索手法として、鼻歌を入力信号とした楽曲検索手法(1)や、

楽曲の部分楽音信号を用いて同一楽曲を高速に 検索する手法(2)などが提案されている。

一方,音楽の曲調を支配する重要な特徴量の一つに和音進行がある。和音は複数の音程の組み合わせを表現するものであり,和音進行は一定時間内に出現する和音の時間的変化を意味する。和音進行の抽出方法については,従来から自動採譜を目的とした研究などが行われているが(3).(4),いずれにおいても,音楽CD などの一般楽曲に対する正確な抽出は未だ難しいのが現状であり,これまで目立った実用例は見られない。

そこで我々は,同一楽曲あるいは似た曲調をもつ複数の楽曲ならば,互いの特徴的な和音進行は編曲の違いや旋律の有無に依らず,相対的に類似することに注目し,研究を行った。本稿では,その実験結果を報告するとともに,楽曲検索を目的とした楽音信号からの和音抽出手法と,カバー曲やBGM曲を含めた類似楽曲の新しい検索手法を提案する。

2. 演算に適した和音表現

和音進行の抽出に関わる研究は,主に自動採 譜や自動伴奏を実現する技術として,従来から 盛んに行われてきた。一般に,高い精度で和音 を検出し,多彩な和音名を同定するには,非常 に多くの計算量を必要とする。また,同時の発 音数が増え打楽器などが重畳されると,根音や 調和音の検出が困難になり,和音の同定が難し くなる。そのため,従来の研究ではCDに収録 されたポップス音楽など,多くの楽器音で構成 され,複雑な編曲が施されたものに対しては, 十分な精度を得ることができず,演算量の上で も実際の適用が難しかった。

一方,本研究における和音進行抽出は,ある 時間幅における楽曲の曲調を和音進行によって 特徴付けることと、それらの類似演算を目的と するため,自動採譜などに求められる瞬時和音 の厳密な再現よりも,和音の時間的変化を高速 に数値化することが重要となる。そこで、n個 の音程から構成される和音をn和音と記述する と,同時発音された4和音以上の和音に対し て,和音名を直接同定するのではなく,3和音 の論理和で扱う方法を提案する。これを3和音 平行表現法と呼ぶ。図1に示すように,論理和 の概念を導入することによって,4和音以上の 和音を3和音の組み合わせに分解することがで きる。なお、4和音以上の和音は、根音が既知 でないと同定することができないが,3和音の 論理和によって,根音の同定を必要とせず,か つ全体の響きを表現することができる。

3. 楽音信号からの和音進行抽出手法

次に,楽音信号から和音進行を抽出する手法について記述する。和音進行の抽出処理は,周波数解析に基づく時系列処理と,時系列情報の補正を行う後処理の2段階で行う。

3.1 周波数解析と和音候補抽出

まず,楽音信号をサンプリング周波数5.5kHzのモノラル信号に変換する。それに対して200msec毎に1024ポイントFFT処理を行い,110Hzの音程Aから4オクターブ分の平均律音階に該当する周波数パワーを,1オクターブの音程群として重ね合わせる。この処理に

 $\begin{array}{lll} \mathbb{A} + \mathbb{C} + \mathbb{E} + \mathbb{G}(\mathbb{A} \text{m7}) & \rightarrow \mathbb{A} + \mathbb{C} + \mathbb{E}(\mathbb{A} \text{m}) \mid \mathbb{C} + \mathbb{E} + \mathbb{G}(\mathbb{C}) \\ \mathbb{A} + \mathbb{C} + \mathbb{E} \mid \mathbb{b} + \mathbb{F} \# (\mathbb{A} \text{dim 7}) & \rightarrow \mathbb{A} + \mathbb{C} + \mathbb{E} \mid \mathbb{b} \pmod{7} \text{ (Adim 7} \text{$

図 1 3 和音平行表現

よって、各音程の高次倍音成分が及ぼす悪影響 を吸収する効果が得られる。

次に,根音からの度数差としてメジャー和音 は4,7,マイナー和音は3,7,セブンス候補 は4,10,ディミニッシュ候補は3,6,とし, パワーの大きい上位6つの音程の組み合わせか ら加算したパワーを評価値として上位2候補の 和音を検出する(図2)。これらの処理を,楽曲 全体または楽曲中の一定区間に対して同様に繰 り返し,第1,第2和音候補列として一時的に 記憶する。記憶された和音候補列は,多くが前 述した3和音平行表現を成している。その理由 は、一般的な楽曲に含まれる和音の多くが4和 音以上であり、3和音平行表現による複合的な 和音表現が有効に作用するためである。ここ で,第3候補以下の3和音も全体の響きを表現 するために必要であるが,次に述べる後処理が 複雑化することと,本稿の目的である和音進行 の類似演算には,おおまかな和音の時間変化が 重要であることなどから,第2候補までの和音 のみを扱うものとする。

3.2 後処理

一般に,音楽を構成する和音進行が1秒以内に変化しつづけることは稀であり,仮に変化があったとしても一時的な場合が多い。そこで,本稿で対象とする和音進行は,曲調を表現し得

る一定区間を取り扱うために,一時的な和音変化には感知せず,最低でも1秒弱の和音変化のみに注目する。この考え方をもとに,以下に述べる和音の平滑化処理を行う。

まず,一時的に記憶した時系列の第1,第2 和音候補列には,実際の和音変化点と, 200msec 単位の検出位置のずれに起因する雑音 が現れることが分かっている(図3上)。そこ で,まず0.6秒以内の和音変化は雑音として扱 い,前後の和音候補を用いて平滑化を行う(図 3中)。また,実際の楽音信号には,多くの音程 が複雑に重なって存在しているため、検出した 各音程のパワーは常に変動している。その結 果,聴感上同様の響きであっても,検出した第 1,2和音候補が交互に入れ替わって出現する 現象が起こる。実際には,和声理論(5)における 平行調の関係にある場合に発生しやすい。この 場合,第1,2候補の各々が,同一の和音表現 を維持するように入れ替え処理を行う(図3 下)。

以上の結果,当該楽曲の第1,2和音列が確定し,各々に対する和音変化点の情報と継続時間のみを保存する。楽曲の特徴によっても異なるが,5~6分の楽曲に対して,平均約1 kバイト程度の情報量となる。

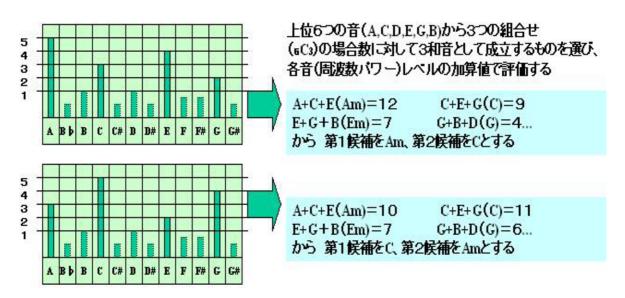


図2 和音候補の検出過程

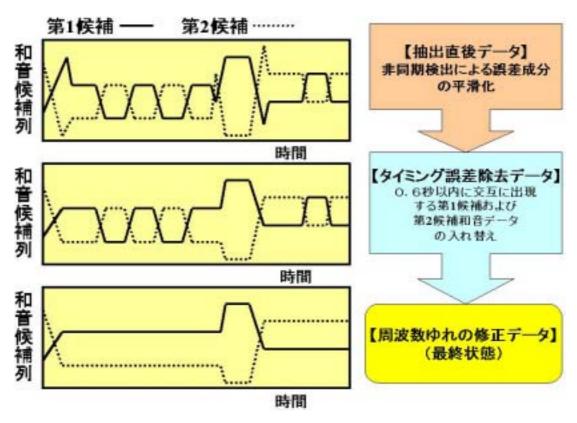


図3 和音の平滑化と入れ替え処理

4. 和音進行の類似演算手法

4.1 和音進行の類似尺度

和音進行を用いて類似楽曲検索を行う場合、 異なる2つの和音進行の類似度を演算する必要 がある。このとき,比較演算に用いる値とし て、前後の和音間に生ずる度数の差分値列(負 の場合には12を加算する)と属性列(メ ジャー,マイナー),すなわち相対的な和音の 動き(以降,和音差分値列と呼ぶ)を用いる方 法をとる。なぜなら,楽曲の調性の違いや転調 の発生,あるいはテンポが伸縮した場合にも, 和音の相対的な動きはあまり変化しないためで ある。なお、その他の3和音表現としては、メ ジャー,マイナーコードの移行時に用いられる セブンス,ディミニッシュコードと呼ばれる和 音があるが,それらの多くが一時的に出現する ものであるため,音楽の曲調を支配するには至 らない。つまり、和音進行の類似演算にも大き な影響を与えないため、これらの和音を扱う場 合には,直前の和音と同一視することによって

演算対象から除外する。

以上のように、和音進行の類似度は一定区間の和音差分値列を比較することによって得られるが、ある楽曲のカバー曲やBGM 曲など、曲調がほぼ一致するものであっても、実際には異なる楽曲であり、両者の和音進行が完全には一致しない。また、同一の楽曲の場合にも、CD 録音と圧縮音楽との違いや、録音状態の差異によって、部分的な和音進行が一致しない場合があるため、本手法では、両者の部分的な差異を吸収しつつ、全体の類似度を適切に演算するための"先読み演算"を行う。

また、和音進行の類似尺度としては、各和音差分値列の距離和、すなわちハミング距離を基本とするが、次の問題を考慮しなくてはいけない。例えば、1度差の2つのメジャー和音を同時に発音すると、極めて耳障りな響きとなる。一方、マイナー和音と3度上のメジャー和音を同時に発音すると、マイナーセブンスコードと呼ばれる心地よい響きを成す。和音の類似性

は、同時発音させた場合の響きの親和性として 捉えることができるが、この例に示すように、 和音の親和性と和音間の度数差が必ずしも一致 しないことが分かっている。一般に、和音の響 きには協和音と不協和音があり、聴感上の心地 良さをもとに区別されている。協和音とは、和 音を構成する音程群が調和して響くものであ り、不協和音はその反対である。両者の構成法 については、和声(コード)理論として文献(5) に詳しい。

以上の問題を踏まえ,本手法では和声理論に 習った聴感上の心地よさ,つまり和音の親和性 を考慮に入れた類似演算の補正処理を行う。

4.2 先読み演算と和声理論の導入

次に,図4を用いて具体的な演算方法を記述する。

図4おいて,両者の和音進行の相関距離として,各変化点における和音差分値列の距離和を用いるが,同一変化点の距離を演算すると同時に,1~2つ先の変化点との距離も計算し,現時点の距離よりも,先の和音差分値との距離が短い場合には(図4の),比較位置を先に移動し,それ以降は新たな比較位置を基準に,互いの和音差分値列の距離計算を継続する。例えば,和音進行AがCFGCAmであった場合には,最初の比較位置において,和音進行AのCFよりも1つ先読みしたCGが和音進行Bに一致す

るので,次回以降の和音進行 A 比較位置は2つ 先のG C からとなる。

また,両者が平行調または近親調の一部(属調とその平行調および下属調)にあたる場合には(図4の),近親調ごとに設定した重み付け距離に置換したものを新たな距離とする。例えば,和音進行 A が C F G , 和音進行 B が C Dm G であった場合には,FとDm では3度の度数差があるものの,両者は近親調の中で最も親和性の高い平行調の関係にあるので,0度差として扱う。なお,属調は1度差,属調の平行調および下属調は2度差として扱う。

ただし、同様の和音進行であっても、各和音の継続時間が異なると、必ずしも曲調が類似するとは言い難い。和音進行のみの比較では、このような場合でも高い類似度を出力してしまう。そこで、本手法では、この問題を回避するために上記の補正を行わなかった比較位置間において、和音進行の継続時間の比率(W1/W'1~W5/W'5)を演算し、比較位置間の比率の差分を最終的な距離和に加算することによって、演算結果のあいまいさを排除する方法を採用した。

以上の処理によって,瞬時的な和音が異なっていても和音進行の傾向が類似している区間を検出することを可能とした。また,和音進行の傾向だけでなく動き方の類似性を考慮し,曲調の類似度を妥当な範囲で判断することができる。

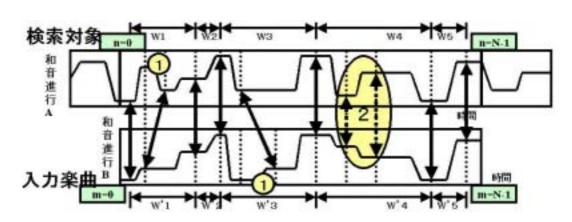


図 4 和音進行の比較演算

5. 類似楽曲検索への適用

和音進行の抽出および類似演算手法を,実際の類似楽曲検索に適用する(図5)。蓄積装置内には,多くの楽曲と予め抽出した和音進行が保存されている。まず,入力を楽音信号とした上で,入力開始時から周波数解析と和音候補抽出を開始し,入力終了時に平滑化などの後処理を行う。そして,確定した第一和音列と,蓄積装置内の各楽曲がもつ第一和音列に対して相関距離の演算を行い,得られた最小の相関距離を類似度パラメータとして獲得する。最終的に,蓄積装置内の全ての楽曲に対する類似度パラメータのうち,小さいものから類似楽曲候補として選出する。

6. 実験結果

本章では,本手法を用いた和音進行の抽出性能と,類似楽曲検索に適用した際の性能評価について記述する。

6.1 和音進行抽出の実験結果

実験には,CD音質のPCM楽音信号を用いた。

抽出演算を行った PC の CPU は Ce I e ron 1 GHz であり,3 分の楽曲に対して抽出に要した時間は約15 秒であった。本手法は,完全な和音の再現ではなく,主要な響きを成す和音進行を抽出するものであるため,評価としては抽出した和音を原曲と重畳してMIDI再生を行い,聴感上で不協な響きを成した和音の全体和音数に対する割合を示した(表1)。

表 1 和音進行抽出の評価結果

対象とする楽曲タイプ	不協和音の割合
ハーモニーが明確に存在する曲	平均 5%
単音,ハーモニーが不明確な曲	平均 45%

6.2 類似楽曲検索の実験結果

実験には、ポップス、クラシック、演歌、ヒュージョン、ジャズを含む約4000曲を用いた。その中にはカバー曲、BGM なども含まれている。なお、検索対象のすべての楽曲には、あらかじめ和音抽出を行った結果が付与されてい

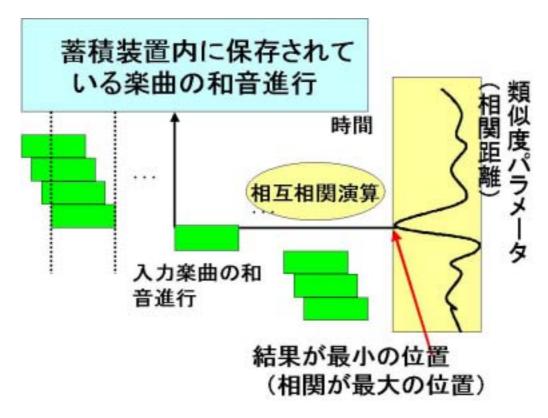


図 5 和音進行を用いた楽曲の類似演算

る。検索の入力信号としては,4000 曲の中のカバーなどが存在する楽曲25 曲に限定し,外部入力から約20 秒単位で楽曲の特徴(サビ)部分,および非特徴部分を入力した。約4000 曲から類似楽曲を検索するのに要した時間は,入力信号の持つ和音進行の長さに依存するが,平均約5秒であった。表記は,25 曲中,同一曲/カバーBGM 曲が1位/2位の類似候補となった曲数である(表2)。

表 2 類似楽曲検索の評価結果

結果	サビ部分入力	非サビ部分入力
同一曲	23曲(92%)	19曲(76%)
カバー /BGM 曲	17曲(68%)	8曲(32%)

7. まとめ

本稿では、CD に収録された音楽にも適用可能な楽音信号からの和音進行抽出手法と、楽曲の類似尺度として和音進行を用いた類似楽曲検索手法を提案した。

まず,和音進行抽出においては,比較演算に適した3和音平行表現を提案し,複雑な和音を容易に表現できることを示した。さらに,和音候補の検出雑音に対する平滑化処理と,和声理論の平行調の概念を利用した後処理を施すことで,少ない演算量で有用な和音進行を出力できることを示した。

次に,和音進行を用いた類似楽曲検索においては,和声理論における近親調の概念を和音間の距離尺度に導入したことによって,瞬時和音の違いが比較演算に及ぼす雑音感度を下げ,広範囲の類似検索を可能とした。類似検索結果としては,同一曲のみならず,原曲が同一であるカバー曲やBGM 曲も相互に検索できることを示した。

一方で,以下の課題も残された。和音抽出においては,楽曲中の和音を構成しない部分,単旋律楽曲からは妥当な抽出を行うことができなかった。類似検索においては,入力楽音の和音

進行が、楽曲を識別するに至るほど特徴を持たない場合や、和音の変化数が少ない場合には本 手法は適用できなかった。これらの問題は、和 音のみを用いた本手法の限界であり、他の音楽 特徴量を併用する必要性があると思われる。

今後は,検索性能向上と,和音進行の類似演算について高速化を試みる予定である。

8. 謝辞

本研究を進めるにあたり,協力を頂いたモバ イル開発センターの各位に感謝する。

参考文献

- (1) 小杉尚子,小島明,片岡良治,串間和彦: "大規模音楽データベースのハミング検索システム," 情処ジャーナル, Vol. 43, No. 2-12,音楽情報科学, pp. 287-298, 2002
- (2)木下昭悟,柏野邦夫,黒住隆行,村瀬洋:"グローバルな枝刈りを導入した音や映像の高速探索,"信学論,Vol.J85-D-,No.10, pp.1552-1562,0ct.2002
- (3) 亀岡弘和,篠田浩一,嵯峨山茂樹: "周波数領域の D P マッチングによる自然楽器演奏の和音ピッチ推定,"情処研報音楽情報科学 2002 MUS 46 3,pp. 17 22, 2002
- (4)山田洋子 ,後藤真孝,猿渡洋,鹿野清宏: "音楽音響信号を対象とした和音名同定手 法," 音講論集, 秋季1-1-3, pp.641-642 , 2002
- (5) 北川祐: "絶対分かる!コード理論", リットーミュージック

筆 者

莪山 真一(がやま しんいち)

所属:研究開発本部 総合研究所ストレージ システム研究部

入社年月: 1991 年 4 月

主な経歴: アクティブノイズキャンセラの開発, ディジタル無線変復調技術の開発, エージェント技術, 音楽構造化技術の研究を経て, 現在に至る。

得意分野,技術: ソフトウェアによるアルゴ リズム研究とアプリケーション開発。

特に,マルチメディア情報の特徴抽出と検索技術に興味を持つ。